Spatially Varying Autoregressive Processes
نویسندگان
چکیده
Spatially Varying Autoregressive Processes Aline A. Nobre, Bruno Sansó and Alexandra M. Schmidt Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro-RJ CEP:21.045-900, Brazil Department of Applied Mathematics and Statistics, University of California at Santa Cruz, Santa Cruz, CA 95064 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ CEP:21.945-970, Brazil
منابع مشابه
Testing for Spatial-Autoregressive Lag versus (Unobserved) Spatially Correlated Error-Components
One of the central challenges to empirical inference in the context of potentially interdependent observations, known as Galton’s Problem, is the difficulty distinguishing spatial correlation in outcomes due to the observed units’ exposure to spatially correlated shocks (‘common exposure’) from spatially dependent outcomes due to interdependence (‘spillovers’ or ‘contagion’) among units. The ap...
متن کاملAsymptotic Distributions of Quasi-Maximum Likelihood Estimators
Asymptotic properties of MLEs and QMLEs of mixed regressive, spatial autoregressive models are investigated. The stochastic rates of convergence of the MLE and QMLE for such models may be less than the √ n-rate under some circumstances even though its limiting distribution is asymptotically normal. When spatially varying regressors are relevant, the MLE and QMLE of the mixed regressive, autoreg...
متن کاملBayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes
This paper considers modelling spatially varying regression effects for multivariate mortality count outcomes. Alternative approaches to spatial regression heterogeneity are considered: the multivariate normal conditional autoregressive (MCAR) model is contrasted with a flexible set of priors based on the multiple membership approach. These include spatial factor priors and a nonparametric appr...
متن کاملComparing Time-Varying autoregressive Structures of Locally Stationary Processes
In this paper a novel statistical test is introduced to compare two locally stationary time series. The proposed approach is a Wald test considering time-varying autoregressive modelling and function projections in adequate spaces. The covariance structure of the innovations may be also time-varying. In order to obtain function estimators for the time-varying autoregressive parameters, we consi...
متن کاملSpatially varying SAR models and Bayesian inference for high-resolution lattice data
We discuss a new class of spatially varying, simultaneous autoregressive (SVSAR) models motivated by interests in flexible, non-stationary spatial modelling scalable to higher dimensions. SVSARmodels are hierarchical Markov random fields extending traditional SARmodels. We develop Bayesian analysis usingMarkov chain Monte Carlo methods of SVSARmodels, with extensions to spatio-temporal contexts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technometrics
دوره 53 شماره
صفحات -
تاریخ انتشار 2011